

Model: 275 Ton, 350 Ton, 500 Ton, and 750 Ton Top

Drives

Serial #: N/A

April 17, 2013

Product Bulletin # 126

Alert

Fastening the LWCV Actuator Anti-Rotation Bracket

Issue

The lower well control valve (LWCV) actuator on the 275 ton, 350 ton, 500 ton, and 750 ton top drives is held in place by an anti-rotation bracket. This bracket is fastened to the LWCV actuator guard with capscrews. If these capscrews were sheared during operation, the bracket would fall, potentially causing injury.

Recommendation

Inspect the capscrews and make sure they are torqued and safety wired properly. (See Figure 1 below and Figure 2 on page 2.) This will ensure that the bracket will be retained in case the capscrews are sheared.

Figure 1: LWCV Anti-Rotation Bracket with Safety Wire in Place

Model: 275 Ton, 350 Ton, 500 Ton, and 750 Ton Top

Drives

Serial #: N/A

April 17, 2013

Alert

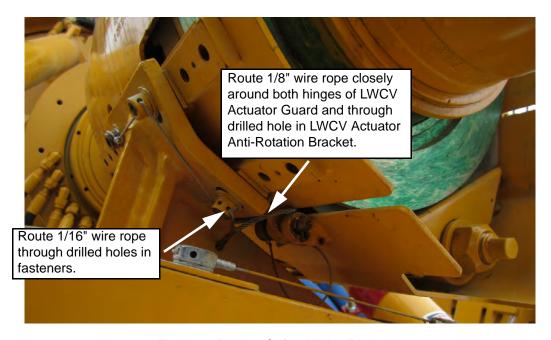


Figure 2: Bracket Safety Wiring Diagram

Reference Documentation

Refer to the following engineering documents (attached) when performing this procedure:

- ENG701 Safety Wiring
- ENG725 Torque Values for Capscrews

Information

Call the RigLine 24/7™ Support Line if there are any questions about this procedure.

	ENGINEERING SPECIFICATION MANUAL	
CANIRIG	Document:	Page 1 of 5
DRILLING TECHNOLOGY LTD.	ENG 701	
Subject: Safety Wiring		Revision: 2

1.0 OBJECTIVE

1.1. This document describes the usage of safety wiring at Canrig.

2.0 SCOPE

2.1. This specification applies to all products manufactured by Canrig Drilling Technology.

3.0 PROCEDURE

- **3.1.** Where safety wiring is required:
 - **3.1.1.** The drawings indicate where safety wiring is required. This is based in part on the following criteria:

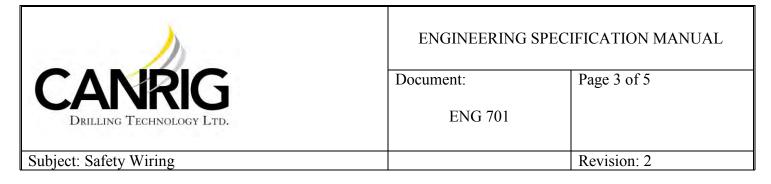
3.1.2. Location:

- Any part that is mounted "upside down"
- If the part has the possibility to fall without being contained <u>from a height of greater than 6ft (2m)</u>
- High vibration areas
- **3.1.3.** Some other general guidelines are:
 - Only bolts that have holes drilled for safety wire should be used, even if the need to wire is not immediately apparent.
 - <u>Loctite® 242 threadlock</u> is not considered a substitute for safety wire.

Effective Date: September 4, 2003	Prepared by: Jason Sloan	Approval: Faisal Yousef
Supersedes: 1		Date: September 4, 2012

	ENGINEERING SPECIFICATION MANUAL	
	Document:	Page 2 of 5
DRILLING TECHNOLOGY LTD.	ENG 701	
Subject: Safety Wiring		Revision: 2

- **3.2.** Where safety wiring is NOT required:
 - **3.2.1.** Where ever Stover nuts are used.


Note: The Stover nuts are reusable, but must not be reused more than four (4) times. For complete information regarding Stover nut, see ENG725: Torque value for caps crews.

- **3.2.2.** If the bolt is captive such that even when loose, the bolt and the part it retains cannot fall.
- **3.2.3.** Where safety wire cannot be applied (i.e. button head, countersink, and/or recessed bolts)

 <u>Loctite® 242 threadlock (BLUE)</u> must be applied to threads and lock washers (<u>e.g.</u>

 <u>internal/external teeth lock washer or Nord Lock washer or equivalent)</u> must be used where permissible, as a substitute.
- **3.3.** What safety wire to use where:
 - **3.3.1.** 1/16" diameter wire rope to be used for fasteners. Example: wired/laced bolts prevent loosening. Fall restraint for fasteners such as safety / diaper pins.
 - **3.3.2.** 1/8" diameter wire rope, with no more than 6 inches slack, to be used as a fall restraint for anything up to 100 lbs.
 - **3.3.3.** 3/16" diameter wire rope, with no more than 6 inches slack, to be used as a fall restraint up to 500 lbs., unless specified differently on drawings or installation instructions.
 - **3.3.4.** For components weighting more than 500 lbs., consult with engineering.
- **3.4.** Table 1 shows typical safety wire rope and corresponding ferrule part number.
 - **3.4.1.** Multi-Groove Compression Tool:
 - M10192 TOOL, HAND, SWAGE, 1/32 1/16
 - **M10193** TOOL, HAND, SWAGE, 1/16 3/16
 - Both tools listed available from McMaster-Carr or equivalent

Effective Date: September 4, 2003	Prepared by: Jason Sloan	Approval: Faisal Yousef
Supersedes: 1		Date: September 4, 2012

Table 1 Safety Wiring Part Number

Size (inch)	Wire rope P/N Description	Oval Sleeve P/N Description	Oval Stop P/N Description
1/16	M21-2000-010 WIRE ROPE, 1/16", 7 X 7, STAINLESS	M19-3006-010 FERRULE, 1/16, OVAL, ALUMINUM	M10197 FERRULE, 1/16, STOP, ALUMINUM
1/8	M10022 WIRE ROPE, 1/8, 7 X 19, STAINLESS	M19-3009-010 FERRULE, 1/8, OVAL, ALUMINUM	M10241 FERRULE, 1/8, STOP, ALUMINUM
3/16	M21-2001-010 WIRE ROPE, 3/16, 7 X 19, STAINLESS	M19-3007-010 FERRULE, 3/16, OVAL, ALUMINUM	M10217 FERRULE, 3/16, STOP, ALUMINUM

3.5. Table 2 shows number of compressions for aluminum oval and stop swage sleeve.

Table 2 Type of Swage Sleeve and Number of Compression

Туре	Number of Compression
Aluminum Oval Sleeve	Wire Diameter (inch) Number of Compression 1/16 2 1/8 3 3/16 4
Aluminum Stop Sleeve	Wire Diameter (inch) Number of Compression 1/16 1 1/8 2 3/16 2

Effective Date: September 4, 2003	Prepared by: Jason Sloan	Approval: Faisal Yousef
Supersedes: 1		Date: September 4, 2012

	ENGINEERING SPECIFICATION MANUAL	
CANIDIC	Document:	Page 4 of 5
Drilling Technology Ltd.	ENG 701	
Subject: Safety Wiring		Revision: 2

3.6. Table 3 shows calculation limit as listed in section 3.3 above.

Table 3 Safety Wiring Calculation

Safety Wire	Nominal Breaking Strength (lbs)	Safety Factor of 2:1 ¹ (lbs)	Canrig Safety Wiring Specification ² (lbs)	Maximum Expected Shock Load Values ³ (lbs)
1/8" – 7 X 19 STAINLESS	1,760	880	100	300
3/16" – 7 X 19 STAINLESS	3,700	1,850	500	1,500

NOTES:

4.0 REFERENCE

- **4.1.** Bridon America product catalog: Wire rope specification
- **4.2.** Nord-lock Inc. product information catalog: Nord-lock washers
- **4.3.** Henkel User's Guide: Threadlocking Loctite® 242

5.0 NOTES

5.1. The four (4) times limit for Stover nuts was derived from in-house testing.

Effective Date: September 4, 2003	Prepared by: Jason Sloan	Approval: Faisal Yousef
Supersedes: 1		Date: September 4, 2012

¹Formula is Nominal Breaking Strength

²With no more than 6" slack to be used for anything up to <u>stated weight.</u>

³Shock load on a wire rope <u>result in an applied load of 3 times the suspended weight of</u> a 6 inch drop. Formula is $3 \times Max$ Specified Weight

	ENGINEERING SPECIFICATION MANUAL	
	Document:	Page 5 of 5
Drilling Technology Ltd.	ENG 701	
Subject: Safety Wiring		Revision: 2

Revision 2:

- Changed to new format.
- Added reference regarding STOVER nuts reusability.
- Added section 3.3.4 for components greater than 500 lbs.
- Updated multi-groove compression tool P/N and added information regarding number of compression for swage sleeve
- Added Table 1 and Table 2
- Reformatted Calculation Chart into Table 3.
- Deleted "can increase the weight of the load 3 times for" from Table 3 Notes
- Added new section 4 and section 5

Revision 1:

• Revised maximum expected shock load values.

Effective Date: September 4, 2003	Prepared by: Jason Sloan	Approval: Faisal Yousef
Supersedes: 1		Date: September 4, 2012

<u>)</u>	ENGINEERING SPECIFICATION MANUAL		
CANRIG	Document:	Page 1 of 4	
Drilling Technology Ltd.	ENG 725		
Subject: Torque values for cap screws		Revision: 1	

1.0 OBJECTIVE

1.1. This document describes the torque values for all fasteners used at Canrig.

2.0 SCOPE

2.1. This specification applies to all products manufactured by Canrig Drilling Technology.

3.0 PROCEDURE

The following guidelines must be followed when installing <u>cap screws</u>, bolts and nuts unless otherwise noted on the engineering drawing or the engineering master:

- **3.1.** All <u>cap screws</u> used on Canrig products <u>shall</u> meet or exceed the SAE Grade 8 specifications. They must be torqued to the values shown on <u>Table 1</u> unless otherwise noted on the assembly drawings or the engineering master (bill of material).
- **3.2.** All <u>cap screws</u> permanently installed must be coated with Loctite® 242 <u>threadlock</u> or the equivalent after <u>ensuring</u> that the cap screws threads and mating thread are free of all dirt, oil and grease. This is a medium strength thread locker that prevents rusting of all threads and prevents loosening due to vibration. Loctite® 242 threadlock can be sheared using normal hand tools.
 - **3.2.1.** Disassembly of Loctite® 242 threadlock: In rare instances where hand tools do not work because of excessive engagement length, apply localized heat to nut or bolt, but do not exceed 250°C (482°F). Disassemble while hot using appropriate PPE to avoid burns.
 - **3.2.2.** For cleanup: Cured product can be removed with a combination of soaking in a Loctite solvent and mechanical abrasion such as a wire brush.
- **3.3.** All <u>cap screws</u> that require periodic loosening to facilitate adjustment of components (<u>e.g.</u> tool joint clamps, link tilt clamps, guide rails, <u>etc.</u>) should be coated with anti-seize thread compound <u>Loctite® Silver Grade</u> 767 or the equivalent.
- **3.4.** When using <u>cap screws</u> with locknuts, use only <u>Grade</u> C Stover locknuts or equivalent. <u>Stover</u> nuts are reusable, but must not be reused more than <u>four</u> (4) times.

Effective Date: April 26, 2011	Prepared by: Faisal Yousef	Approval: Beat Kuttel
Supersedes: Rev 0	Page: All	Date: September 4, 2012

	ENGINEERING SPECIFICATION MANUAL		
CANIDIC	Document:	Page 2 of 4	
Drilling Technology Ltd.	ENG 725		
Subject: Torque values for cap screws		Revision: 1	

- **3.5.** All <u>cap screws</u> requiring the use of Nord-Lock washers <u>or equivalent</u> must be torqued to the same values shown on Table 1.
 - **3.5.1.** For through hole applications: Turn both fasteners in order to close the cams on both washer pairs before tightening to minimize settlements. Keep the nut secured while tightening the bolt.
- **3.6.** For Multi-jackbolt Tensioner (goes by the trade name Superbolt®), the jackbolts must be torqued to the same values shown on Table 1.
- **3.7.** When working with a circular pattern, torque cap screws in a crisscross sequence.

4.0 REFERENCE

- **4.1.** Canrig engineering drawings
- **4.2.** Canrig engineering masters
- **4.3.** Henkel User's Guide: Threadlocking Loctite® 242
- **4.4.** Nord-lock Inc. product information catalog: Nord-lock washers

5.0 NOTES

- **5.1.** The torque values shown above are for compatible materials.
- **5.2.** The four (4) times limit for Stover nuts was derived from in-house testing.
- **5.3.** Loctite® 243 threadlocker can be used in place of Loctite® 242 for surfaces with slight oil-contamination and inactive surfaces such as stainless steel.

Effective Date: April 26, 2011	Prepared by: Faisal Yousef	Approval: Beat Kuttel
Supersedes: Rev 0	Page: All	Date: September 4, 2012

))	ENGINEERING SPECIFICATION MANUAL		
CANIRIC	Document:	Page 3 of 4	
DRILLING TECHNOLOGY LTD.	ENG 725		
Subject: Torque values for cap screws		Revision: 1	

Revision 1:

- Fixed typographical error.
- Deleted "the chart below" from section 3.1
- Added section 3.2.1 and 3.2.2 "Loctite 242 disassembly and cleanup"
- Added section 3.5.1 "Through hole application using Nord-Lock washer"
- Added section 3.6 "Multi-Jackbolt Tensioner (MJT)"
- Added section 4.3 and 4.4
- Added section 5.2 and 5.3

Effective Date: April 26, 2011	Prepared by: Faisal Yousef	Approval: Beat Kuttel
Supersedes: Rev 0	Page: All	Date: September 4, 2012

<i>)</i>)	ENGINEERING SPECIFICATION MANUAL		
CANIDIC	Document:	Page 4 of 4	
DRILLING TECHNOLOGY LTD.	ENG 725		
Subject: Torque values for cap screws		Revision: 1	

Table 1 Cap screw Torque Values

	Grade 8 – UNC Thread						
	Hex Head Cap screw Socket Head Cap screw		Plated Bolts or Machined		Flat Head (_	
Size	Torque <u>ft-lb</u>	Torque <u>N-m</u>	Torque <u>ft-lb</u>	Torque <u>N-m</u>	Torque <u>ft-lb</u>	Torque <u>N-m</u>	Size
1/4	11	15	8	11	8	11	<u>1/4</u>
5/16	23	31	17	23	16	21	<u>5/16</u>
3/8	40	54	30	39	26	34	3/8
7/16	65	88	49	64	42	55	<u>7/16</u>
1/2	99	134	74	97	63	82	<u>1/2</u>
9/16	159	216	119	156	101	133	<u>9/16</u>
5/8	198	268	149	194	126	165	<u>5/8</u>
3/4	350	475	263	343	230	292	3/4
7/8	566	767	425	556	360	472	7/8
1	848	1,150	636	833	540	707	1
1-1/8	1,245	1,688	934	1,222	792	1,037	<u>1-1/8</u>
1-1/4	1,750	2,373	1,313	1,718	1,114	1,458	1-1/4

<u>Please consult with Engineering Department for bolts larger than 1-1/4 inches. The values shown</u> above were derived with application of Loctite® Silver Grade 767 anti-seize (i.e. K=0.18).

Effective Date: April 26, 2011	Prepared by: Faisal Yousef	Approval: Beat Kuttel
Supersedes: Rev 0	Page: All	Date: September 4, 2012